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Brief summary of accomplished results: 
 
Research report: 
Aims (provided by PI): 
 
We propose to use machine learning to classify measurements of enzyme dynamics for high-throughput 
screening.  
Our group specializes in a kind of spectroscopy called two-dimensional infrared (2D IR) spectroscopy that measures 
protein dynamics on the femtosecond to picosecond timescale. We have previously shown that this method is 
sensitive to functional motions in enzymes, and we currently have a funded NIH R21 project to develop 2D IR for 
high-throughput screening approaches to drug discovery. Our current methods of data analysis, however, require 
many measurements to determine the dynamics and thereby identify changes resulting from effector binding. We 
propose to use machine learning to classify spectra as a way of identifying potential hits with fewer measurements.  

The central objective of this proposal is to evaluate the appropriateness and performance of machine 
learning as a tool for the analysis of 2D IR spectra. While previous work from our group has shown the ability of 
machine learning methods to classify 2D IR spectra exhibiting large differences, the relative differences of various 
enzyme-effector pairs are generally unknown and potentially small. Therefore, we propose to test the limits of 
machine learning classification of 2D IR spectra. If successful, this approach will establish the feasibility of machine 
learning for use in high-throughput screening using 2D IR and will produce the necessary proof-of-concept results to 
motivate continued development of machine learning augmented 2D IR for screening allosteric effectors in drug 
discovery. To achieve the goals of this project we propose the following aims: 
Aim 1. Classify 2D IR spectra via machine learning methods. Classification of allosteric effectors will need to 
discriminate nuanced and potentially small differences. As a proof-of-concept, we propose using machine learning 
methods to classify simulated 2D IR spectra into the categories of “Same” or “Different”. Simulated spectra have 
the advantage of providing an essentially unlimited dataset as well as using input parameters set by the user such 
that the true value is known a priori. We have existing experimental data of modified enzymes whose spectra 
exhibit quantifiable differences. Comparing the magnitude of these differences with the magnitude of differences 
detectable by machines learning will establish the efficacy of machine learning augmented 2D IR for screening 
allosteric interactions.  



Aim 2. Determine the minimum number of data points needed for classification. Our current method of analysis 
requires many high-resolution spectra. However, based on preliminary work in our group, we believe accurate 
classification can be accomplished with a significantly reduced dataset. We aim to utilize machine learning to not 
only reduce the number of data points need for classification, but to also identify the minimum dataset size for 
accurate classification. These studies will enable the application of 2D IR in a rapid screening protocol.  
 
Data for Aims: 
Each two-dimensional spectrum is composed of a complex valued intensity as a function of pump-time (x-axis) and 
probe-frequency (y-axis), respectively. The frequency axis spans an ~150-pixel range. The time axis range is 
typically ~167 time points for our experiments. The slices of intensity vs time yield a free induction decay (FID) for 
each frequency. Thus, each two-dimensional spectrum consists of 150 separate FIDs. 
 
The two-dimensional spectra are then collected as a function of a second time domain TW, which typically includes 
anywhere from a few to a hundred distinct 2D IR spectra each at a different value of TW. Thus, in total, the 2D IR 
data form a complex-valued three-dimensional data cube as a function of two time axes and a frequency axis. For 
both time axes, the time intervals and number of points can be varied independently. 
 
The simulated 2D IR spectrum for a single sample is generated by defining two key line-shape parameters: Δ and 𝜏𝜏. 
To generate a dataset of samples, a reference �Δ𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟� is selected and samples are generated by varying the 
(Δ𝑖𝑖 , 𝜏𝜏𝑖𝑖) parameters of sample index 𝑖𝑖. The dataset is divided into two categories: “Same” and “Different”. If the 
percent difference magnitude of the sample (Δ𝑠𝑠, 𝜏𝜏𝑠𝑠)  relative to the reference is larger than 10%, the sample is 
categorized as “Different”; otherwise the sample is categorized as “Same”. Each category is composed of 1000 
samples. Additional datasets are generated for different values of signal-to-noise (SNR) by adding gaussian noise to 
the simulated spectra. The 2D IR spectrum for each sample is normalized such that the maximum value does not fall 
outside the range [(−1 − 1𝑖𝑖), (1 + 1𝑖𝑖)], while maintaining the scaling between each two-dimensional spectrum. 
 
 
AI/ML Approach: 
 
In this report, we explore the use of student-teacher distiller networks for the purpose of classification. The goal of 
our research is to improve the accuracy of classification models by leveraging the knowledge of larger, more 
complex models (i.e., the teacher) to train smaller, more lightweight models (i.e., the student). The distillation 
process involves transferring the knowledge learned by the teacher model to the student model through a 
combination of mimicking the teacher's predictions and learning from its mistakes. Our approach is particularly 
relevant for scenarios where the computational resources available for training and inference are limited, making it 
challenging to deploy large models in real-world applications. By distilling the knowledge from larger models into 
smaller ones, we aim to achieve a good balance between accuracy and efficiency, making our models suitable for 
deployment in resource-constrained environments. 
 
Data Pre-processing: 
 
For this classification problem, we perform several data preprocessing steps. Firstly, we create two folders, one for 
"SAME" and the other for "DIFF", each containing a set of 1000 sample images. We randomly shuffle the final 
paths in the folders and split the images into training and testing sets. 
 
For each image, read both the real and imaginary components of the image data. We then stack the real and 
imaginary components of each image together to form the teacher data. However, for the student data we reduce the 
size of the input data by picking every tenth value in both the pump-time and Tw axes. Hence the Student data is 
1/100th the size of teacher data. Finally, we normalize the data to ensure that the data values fall within a specific 
range. The resulting preprocessed data includes the teacher data and student data for both the training and testing 
sets, as well as the corresponding numerical labels for DIFF and SAME categories for each set. 
 
Model design: 
Both teacher and student networks are based on the MobileNet architecture, which is a popular convolutional neural 
network architecture for efficient and mobile-friendly image classification. 



 
The MobileNet blocks consist of depthwise separable convolution layers. A depthwise separable convolution layer 
consists of two parts: a depthwise convolution and a pointwise convolution. 
 
The depthwise convolution applies a separate convolutional filter to each input channel, which allows the model to 
capture spatial information while reducing the number of parameters. This is followed by a pointwise convolution 
that applies a 1x1 convolutional filter to combine the outputs of the depthwise convolution. The pointwise 
convolution allows the model to learn complex, non-linear representations of the input data. 
 
In both the teacher and student networks, there are multiple MobileNet blocks stacked on top of each other. These 
blocks are separated by a down sampling layer, which reduces the spatial dimensions of the feature maps while 
increasing the number of channels. 
 
The overall structure is: 
Conv block 
MobileNet block 
Conv Block 
Dense Layers 
Output Layers.  
 
However, The Distiller class takes the following parameters during initialization: 

• teacher: the pre-trained teacher network 
• student: the student network to be trained 
• temperature: the temperature parameter used for the softmax function during knowledge distillation 
• alpha: the weight assigned to the KD loss during training 

 
The Distiller class has a train method, which performs the training of the student network using knowledge 
distillation. During each training epoch, the method iterates over the training data and computes the KD loss 
between the teacher and student outputs. The overall loss for the student network is a weighted sum of the KD loss 
and the original cross-entropy loss between the student network predictions and ground truth labels. 
 
Experimental methods, validation approach: 
As a part of the experimental setup, for each of the SNR categories,  
The train: test split is 80:20.  
 
 
Teacher Network:  



 

 
 
 



 
 
 
 
 
 
Student network: 
 
 
 



 
 

 



 
 
We used Adam  with following configuration: 
optimizer1 = tf.keras.optimizers.Adam( 
    learning_rate=1e-6, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False, 
    name='Adam', decay= 1e-5, clipvalue=0.5) 
categorical_crossentropy loss for both teacher and student network. KLDivergence loss for Distiller network. 
 
All the models are trained for 100 epochs with 32 as batch size.  
 
Results: 
The results for the model are as follows.   

Teacher Network AUC Student Network AUC 
Experiment name Training 

AUC 
Training 
Accuracy 

Test 
Accuracy 

Training 
AUC 

Training 
Accuracy 

Test 
Accuracy 

Dataset 5- 1000 
examples - SNR 100 

99.6 98.12 95.75 99.2 97.19 96.5 

Dataset 5- 1000 
examples - SNR 50 

98.64 95.19 95.5 99.13 96.69 97.25 

Dataset 5- 1000 
examples - SNR 5 

97.03 93.06 90.75 95.54 89.88 90.5 

Dataset 5- 1000 
examples - SNR 2 

92.97 86.81 86.25 89.74 83.44 83.25 

Dataset 5- 1000 
examples - SNR 0 

51.39 50.56 46.25 48.21 47.87 45.25 

 
Previous work by the Cheatum group has shown the following: that categorization of 2D IR spectra via 

artificial neural networks is possible (trained a network to categorize simulated spectra), and that categorization is 
still possible even with low SNR (trained a network to categorize experimental spectra at various SNR). The 
simulated spectra were able to be accurately classified (~99%) even when only one real-valued spectrum at a single 
Tw was selected, corresponding to a data-reduction of 334x. The simulated spectra were complicated by generating 
spectra with two pairs of (Δ, τ) instead of one, which resulted in ~94% accuracy using 3 Tw  values (111x data-
reduction). The experimental spectra were able to be accurately classified (100% at 100 SNR) for three real-valued 
spectra, corresponding to a data-reduction of 111x. However, this previous work was only validated for samples 
with relatively large spectral differences between categories, which the present study addresses. 
 In this study, sample spectra were simulated such that the differences between their simulation parameters 
were relatively small. It was shown that despite the small spectral differences, accurate categorization was still 
possible, even when using a data-reduction of 100x. Thus, aim 1 is considered completed. 
 
 Due to the time-span of this six-month study, it was infeasible to study the minimum number of data points 
needed for classification. This would have required generating a plot of “accuracy vs. data-reduction” for various 
SNR datasets. Thus, aim 2 is considered incomplete. 
 
Ideas/aims for future extramural project: 



It should be noted that the SNR 0 dataset should result in 50% accuracy, as the entire dataset is only 
gaussian noise. Thus, test accuracies for this study should be taken with ~5% uncertainty. Further work could 
investigate if this discrepancy is due to bias in the test set, or due to bias in the network.   
 
 An additional objective that was discussed was to complicate the spectra by adding a second (Δ, τ) pair 
when generating samples, as was done in the previous Cheatum group simulation studies. This was not attempted 
due to time constraints. 
 
 An idea was proposed that, instead of manually picking which data-points were most important for 
classification, to train a header network to pick the points automatically that would then be fed to the classification 
network. This was not attempted due to time constraints. 
 
 


