
Iowa Initiative for Artificial Intelligence 

Final Report 

Project title: Validation of predicted tumor recurrence lesions of 

deep learning-segmentation based prognostication (DESEP) 

model 

Principal 

Investigator: 

Yusung Kim, Ph.D (PI),  

Prepared by 

(IIAI): 

Through our collaborative group (Drs. Stephen Baek, 

Xiaodong Wu and Yusune He) 

Other 

investigators: 

Xiaodong Wu, Ph.D., Stephen Baek, Ph.D., John Buatti, 

M.D., Bryan Allen, M.D.,Ph.D., Brian Smith, Ph.D., Jordan Gainey, 

M.D. 

Date: 1/22/2020 

 

Were specific aims fulfilled: Y 

Readiness for extramural 

proposal? 

N (but in preparation) 

If yes   …   Planned submission date    June, 2021 

Funding agency    NIH 

Grant mechanism    U01 

If no   …   Why not? What went wrong? A grant proposal is under-

preparation with the aim of submitting it at 

June, 2021. Nothing went wrong but we 

need more data based upon what we found 

through this pilot study. 

 

Brief summary of accomplished results:  All 3D high-risk map prediction results were 

validated for tumor recurrence lesions when a deep learning segmentation-based prognostication 

(DESEP) model is used on FDG PET/CT images for NSCLC patients treated with stereotactic 

body radiotherapy (SBRT). Total 36 recurrent patients were identified, and a total of 61 recurrent 

tumors have been analyzed. We found the 3D predicted recurrent region matched to real 

recurrent tumor region with only 20% - 29% accuracy even though we had found a very promising 

case before this pilot study. Developing the current AI algorithm (DESEP) model is beyond the 



scope of this pilot grant, requiring much more commitment that could not be covered by the 

allowed budget. Thus, we have focused on the 1-D prediction of DESEP based upon what we 

found from the validation and analysis of all 61 recurrent tumors. We thoroughly analyzed the 

capability of DESEP prediction power in 1-D (i.e., yes or no) for progressive disease, local 

progression free survival (LPFS), overall (OS), and disease specific survival (DSS) when 

compared to current tumor response assessment standard (RECIST v1.1). We found there was 

a high concordance between DESEP-predicted LPFS risk category and manually calculated 

RECISTv1.1 (φ=0.544, p=0.001). Neither the auto-segmentation based volumetric RECIST nor 

the computer-based unidimensional RECIST correlated with RECISTv1.1 (p=0.081 and p=0.144, 

respectively). While RECISTv1.1 correlated with LPFS (HR=6.97,3.51-13.85,p<0.001), it could 

not provide insight regarding DSS (p=0.942) or OS (p=0.662).  In contrast, the DESEP-predicted 

LPFS methods were predictive of LPFS (HR=3.58, 1.66-7.18, c=0.90, p<0.001), OS (HR=6.31, 

3.65-10.93, c=0.83, p<0.001) and DSS (HR=9.25, 4.50-19.02, c=0.76, p<0.001). Based upon 

what we discovered, we concluded deep-learning segmentation-based prognostication can 

predict LPFS as well as OS, and DSS after SBRT for NSCLC. It can be used in conjunction with 

RECISTv1.1 to provide additional insights regarding DSS and OS in NSCLC patients receiving 

SBRT. The discovery founded in this pilot study will be used as preliminary data for the upcoming 

NIH U01 grant proposal with the expected submission date of June, 2021. 

 

Research report: 

Aims (provided by PI): “Validate the 3D high-risk map prediction accuracy for tumor 

recurrence lesions when a deep learning segmentation-based prognostication (DESEP) 

model is used on FDG PET/CT images for NSCLC patients treated with stereotactic body 

radiotherapy (SBRT)” 

Our group successfully completed the validation of all available datasets of recurrent 

tumors. After completing the aim of this study, we went even further steps of exploring the 

prediction power of DESEP model. What we discovered from performing the aim of this pilot 

study, the current high-risk map of DESEP is premature to accurately predict the recurrent regions 

in 3D space. In addition, we also discovered 3-D spatial prediction of tumor recurrence is very 

challenging problem for which extensive studies need to be performed. For instance, the 

prediction of DESEP model for the tumor size changes and progression needs to be validated 

first throughout all follow up images, and the DESEP model needs to be further developed 



accordingly. Current DESEP model is only trained on the pre-treatment images. It is expected the 

prediction power of recurrent tumor will be improved when the DESEP model is trained throughout 

SBRT and follow up CT images after SBRT as well as pre-treatment images.  

 

Data: 

As patient characteristics (Table 1), a total of 108 subjects were analyzed retrospectively 

following approval from the University of Iowa Institutional Review Board (IRB: 200503706). All 

patients provided consent for the use of their clinical information and medical images and signed 

an informed consent form approved by the Institutional Review Board. All data collection and 

experimental procedures are in accordance with relevant guidelines and regulations. All patients 

underwent SBRT for NSCLC with treatments ranging from July 2006 to October 2018. Target 

volumes were delineated by radiation oncologists using both CT and PET imaging, and contouring 

was completed using Velocity AI (Varian Medical System, Inc., Palo Alto, CA). Following SBRT, 

patients were followed with surveillance CT images at approximately 2 months following SBRT 

then every 3 months thereafter. There were a total of 51 male and 57 female patients represented 

in this study. There were 55 patients with adenocarcinoma, 41 with squamous cell carcinoma, 12 

adenosquamous, 1 with metastasis from previous NSCLC, and 9 without a biopsy. The patients’ 

prognostic stage varied and included 67 patients with stage I, 6 patients with stage II, 21 patients 

with stage III, and 14 patients with stage IV disease. Overall survival, disease specific survival, 

and local progression free survival were defined from the start of SBRT. By the end of the study, 

72 patients had experienced local progression or death, 58 patients had died, 40 of those deaths 

were cancer-related.  

Patient Population  Prior Treatment 

Age at SBRT 
72.0 years 

(± 9.7 years)  

Previous 
Radiation Therapy 33 (30.6%) 

Mean Overall 
Survival 

1.97 years 
(± 1.44 years)  

Previous 
Surgery 31 (28.7%) 

Mean Disease 
Specific Survival 

1.82 years 
(±1.37 years)  

Previous 
Chemotherapy 41 (38.0%) 



Mean Local 
Progression Free 
Survival 

1.58 years 
(± 1.33 years)  

Previous 
Immunotherapy 2 (1.9%) 

Male 51 (47.2%)  Stage 

Female 57 (52.8%)  IA 51 (47.2%) 

Survival  IB 16 (14.8%) 

Alive  50 (46.3%)  IIA 3 (2.8%) 

Dead 58 (53.7%)  IIB 3 (2.8%) 

Cause of Death  IIIA 5 (4.6%) 

Alive 50 (46.3%)  IIIB 16 (14.8%) 

Cancer-related 40 (37.0%)  IV 14 (13.0%) 

Not Cancer-
related 11 (10.2%)  Karnofsky Performance Score 

Unknown 7 (6.5%)  100 5 (4.6%) 

Local Progression Free Survival  90 25 (23.1%) 

Survived 
without Progression 36 (33.3%)  80 40 (37.0%) 

Progression or 
Death 72 (66.7%)  70 30 (27.8%) 

2 Year Overall Survival  60 6 (5.6%) 

Survived 50 (46.3%)  <60 2 (1.9%) 

Died 42 (38.9%)  Histology 

Insufficient 
Follow-up 16 (14.8%)  

Adenocarcinom
a 55 (50.9%) 

2 Year Disease Specific Survival  

Squamous Cell 
Carcinoma 41 (38.0%) 

Survived 57 (52.8%)  

Adenosquamou
s 2 (1.9%) 

Died 35 (32.4%)  

Metastasis 
from Prior NSCLC 1 (0.9%) 

Insufficient 
Follow-up 16 (14.8%)  

Clinical 
Diagnosis 9 (8.3%) 

2 Year Local Progression Free Survival    

Survived 28 (25.9%)    

Died/Progressed 64 (59.3%)    
Insufficient 

Follow-up 16 (14.8%)    
Table 1: Patient demographics and clinical characteristics. Continuous data are presented 

in the form mean (±standard deviation), discrete data are presented in the form number 

(percentage). 

 



AI/ML Approach:  

In this study, we used a 3D segmentation algorithm using a U-Net architecture that 

previously developed. The architecture has an “hourglass” structure which extracts imaging 

features at varying levels of granularity. The input of the CT Segmentation U-Net is a cropped 3D 

CT image measuring 96 x 96 x 48 mm3 with the tumor located in the center of the image. The 

target output of the U-Net is a segmentation mask trained on the ground truth of our study which 

is a binary mask map defined by three radiation oncologists’ contours of the gross tumor volume 

aggregated by the STAPLE algorithm. Through training the segmentation U-Net, we had achieved 

over 75% of segmentation accuracy measured by dice similarity coefficient in the previous study 

that was performed before this pilot study.  As the U-Net segments the tumor region, it has also 

encoded a large amount of image features (textural, geometric and radiomic features) at the 

“bottleneck” layer which are critical to predict a binary segmentation map. These encoded features 

contain rich information about the tumor shape and texture that may be correlated with survival, 

cancer progression, as well as tumor recurrence. We performed an unsupervised feature 

selection by applying the k-medoids clustering method to cluster the U-Net features into a reduced 

number of representative features (i.e. medoids of the clusters). Then, we use least absolute 

shrinkage and selection operator to identify features exhibiting strong correlations with the survival 

outcomes. Using these DESEP features, we were able to generate predictions associated with a 

low or high risk for overall survival (DESEP-predicted OS), disease-specific survival (DESEP-

predicted DSS), and local progression free survival (DESEP-predicted LPFS). 



To visualize the high-risk regions, an activation maximization scheme was employed to 

visualize the LASSO-selected U-Net features. For a trained U-Net encoder X = q(·|W, b), neurons 

at the bottleneck layer corresponding to the LASSO-selected features were denoted as qi. Then, 

the equation was solved for each individual neuron via gradient ascent: X + = X + γ ∇q (X ) where 

X(k) is the current solution at k-th iteration and γ (k) is a step length. We set γ (k) as 1/σ (k) where 

σ (k) denotes the standard deviation of the gradients. The gradient ∇qi was computed using the 

standard backpropagation 

algorithm. The initial image X(0) 

was initialized with random 

voxel values following the 

Gaussian distribution. We 

visualized a risk map by 

evaluating each voxel’s 

contribution to the prediction of 

survival. We employed a guided 

backpropagation approach. For 

each voxel in the input image, 

with marginal change of the survival probability with respect to the voxel’s intensity, defined as 

, where P is the probability of death and xi,j,k is a voxel value at the position (i, j, k). In the 

guided backpropagation process, we rectified the gradient by dropping the negative gradient 

values to focus on the “risk”. This was achieved by applying 

rectified linear unit (ReLU) activation when the values were backpropagated from node to 

node: 

 

Figure 1. Deep learning-based segmentation model consists of 

two-independent-steps. Deep learning-based segmentation that 
is not trained with survival outcomes (blue box) and statistical, 
survival regression model (green box) where the latent radiomic 

features are analyzed for survival prediction. 



 where A(m) denotes the activation map corresponding 

to the m-th convolutional kernel at the bottleneck encoding. Note that only the LASSO-selected 

features were involved in the survival model P such that  is zero most of the time. Finally, 

the risk map ℛ was defined as a linear combination of all activation maps at the bottleneck layer 

with the coefficients α(m) obtained from the above:  

 

Experimental methods, validation approach:  

To validate the accuracy of the 3D high-risk map of DESEP model, we followed the same 

experimental methods and validation approach that developed through the previous study (Figure 

1). The key innovative approach of the DESEP model resides in the unique two-step architecture 

as demonstrated in Figure 1: Step 1 focuses on learning purely geometric characteristics, 

developed through the automated tumor segmentation task while Step 2 focuses on learning to 

correlate those independently-learned geometric features to clinical endpoints. To visualize which 

lesions in the patient images predicted high risk in terms of 2-year OS (Figure 1), we employed 

a guided gradient backpropagation approach that detailed in the section of AI/ML approach. 

Figure 1 presents the gradient which named as high-risk maps. Heated regions (red) are the 

areas that lowered the probability of 2-year whereas the other area (blue) are the ones that had 

negligible effect on the survival.  Throughout this pilot study, the rigorous quantitative validation 

and characterization of high-risk maps of DESEP model over full 108 NSCLC SBRT patient 

datasets has been performed. The preliminary 108 patient data include three (33%) or four (67%) 

follow up post-CT within 2 year after SBRT treatment. The prediction performance of the high-risk 

maps was fully characterized over the actual recurrent lesions. The series of high-risk maps 

(images) on pre-treatment CT have been generated for all 96 patients per their clinical end points 

(2-year OS). In this study, each high-risk map for each 2-year OS was registered to the post-CT 

image where actual tumor recurrence was identified by radiation oncologists based upon 

radiologists’ medical records and follow-up CT images. The accuracy of predicted high-risk maps 



over actual recurrent lesions as well as pre-treatment tumor volumes were measured. The optimal 

visualization threshold of high-risk map was investigated with balancing the sensitivity and 

specificity in its prediction performance. However, due to the nature of pilot grant with limited 

budget, full development and optimization of high-risk maps was beyond the scope of this study. 

RECISTv1.1 criteria were utilized to categorize treatment response on follow-up CT 

imaging. Measurements were taken of the target lesion along the largest tumor diameter. 

Progression of disease (PD) was determined based on a 20% or greater increase in the diameter 

relative to the smallest of previously measured diameters with a minimum absolute increase of at 

least 5mm. A complete response (CR) was defined as a disappearance of the target lesion. A 

partial response (PR) was defined as a 30% or greater decrease in target lesion summed 

diameters relative to its baseline pre-treatment measurement. A lesion was categorized as stable 

disease (SD) if it did not meet any of the previous criteria. 

The deep-learning based auto-segmentation model was trained to segment the tumor 

volume on each follow-up CT scan.  From this segmentation, the total volume and largest tumor 

diameters were calculated. Each follow-up scan was assigned a category ranging from complete 

response to progression of disease based on the calculated tumor volume (auto-segmentation 

based volumetric RECIST) using ellipsoid volumetric thresholds and the calculated tumor 

diameter (computer-based unidimensional RECIST) using standard thresholds. Using this 

method, the patient’s final categorization was defined as the worst category received on any one 

follow-up CT image which were obtained 2 months after completion of SBRT then every 3 months 

thereafter.  

All statistical analyses were performed using SPSS Statistics, Version 26.0 (IBM Corp. 

Armonk, NY) with a two-sided α=0.05 used to establish statistical significance. The primary 

endpoints utilized in this study were local progression free survival (LPFS), disease-specific 

survival (DSS), and overall survival (OS) which were all defined from the start of SBRT. Local 

progression was defined as having a RECISTv1.1 categorization of progressive disease at the 

location of the treated target lesion as measured by the physician using the largest tumor 

diameter. Data for RECISTv1.1 categorization were dichotomized with a distinction drawn 

between progression of disease versus any other category indicating non-progressive disease. 

Data for survival prediction were produced as a continuous probability ranging from zero to one 

which was then dichotomized into a low-risk group and high-risk group based on a cut-off at a 

50% predicted probability of an event within 2 years after SBRT. 



Correlation between dichotomous variables was established using Cramer’s Phi which 

can be interpreted similarly to a correlation coefficient with a value of one indicating a perfect 

agreement between two variables.18 Survival curves within RECIST v1.1 and DESEP prediction-

based categories were estimated with the method of Kaplan-Meier and compared statistically with 

log-rank tests.19  Survival differences between categories were estimated with hazard ratios (HR) 

obtained from Cox regression.  For surviving patients, their information was censored at the date 

of last follow-up. Model predictions were evaluated at a time point of 2 years after SBRT and 

analyzed using a receiver operating characteristic curve to calculate the c-statistic 

 

Results: 

The accuracy of tumor recurrence prediction was 20 %. The below images are some of 

selected results. We tested different window levels of high-risk maps, optimizing the window 

levels. However, the window levels are all patient-specific. We could not improve the prediction 

accuracy of risk-map by changing window levels. We concluded the current DESEP model is 

limited to predict the recurrence in 3D space (Figure 2).  

 

 



 

 

 



 

 

 

 



 

Figure 2. The comparison of high-risk map (right) over the recurrent tumor (center) 
for the selected cases. 

 

This is the overall accuracy results. No overlapping cases (not generating high-risk signals 

on the recurrent tumors) were recorded as 60%. About 20% cases present partial overlapping, 

while 20% cases presented the high-risk signals (orange or higher color) were found within the 

recurrent tumors. Based upon this 3D prediction, we revisited the prediction power of progression. 

We found its accuracy was 0.755, sensitivity 0.793, and specificity 0.701 which are considerably 

lower than our findings on its prediction power for OS and DSS. Progression disease means the 

tumor is not responding to the high level radiation, and keeps growing. However, tumors typically 

shrink down first and grow later, thus, it seems we need to validate our conclusion through well-

controlled datasets which have enough follow ups such as longer than 2 years. Also, our limited 

dataset size (108 cases) can be part of our poor prognostic result. 

 

The poor prediction power of local progression was confirmed when we generated a K-M 

curve by using overall survival. 



 

Figure 3. The Kaplan-Meier curve for the two groups that classified by DESEP model; 

one is predicted local progression disease group and another is not. No statistical difference was 
found which means the power of differentiating two groups was not efficient.  

 

We also validated the prediction accuracy for the recurrence (1-D, yes or no), since we 

had difficulties in predicting 3D location. We obtained its prediction accuracy of 0.75, sensitivity 

0.86, and specificity 0.61. It was obtained trough data augmentation (i.e. total 92 datasets were 

increased to 1012). In addition, the prediction power for the progressive disease was found as 

the accuracy of 0.71, the sensitivity 0.83, and specificity 0.53. 

After completion of the aim of this pilot study, our group further investigated the prediction 

power of LPFS, OS, and DSS. The method which had the highest agreement with the manually 

measured RECISTv1.1 was the DESEP-predicted LPFS method which extracted features 

associated with worse local progression (φ=0.544, p=0.001). There was a reduced agreement 

with RECISTv1.1 categorizations when only utilizing the auto-segmentation based volumetric 

RECIST method (φ=0.227, p=0.081) or when using the computer-based unidimensional RECIST 

method (φ=0.184, p=0.144).  

Kaplan-Meier curves were generated to estimate differences in LPFS, these curves are 

presented in Figure 4. Having progression of disease by RECISTv1.1 was associated with worse 

LPFS, (HR=6.97, 3.51-13.85, p<0.001). Similarly, having a DESEP-predicted high risk for local 



progression (DESEP-predicted LPFS) was associated with a worse LPFS, (HR=3.58, 1.66-7.18, 

p<0.001). Utilizing the auto-segmentation model to simply calculate the pre-treatment tumor 

volume (HR=1.35, 0.79-2.32, p=0.271) or tumor diameter (HR=0.95, 0.50-1.81, p=0.772) did not 

show a statistically significant association with LPFS. When evaluating the predictive power at a 

time point of 2 years after completion of SBRT using a receiver operating characteristic curve, 

DESEP-predicted LPFS demonstrated a c-statistic of c=0.90 (0.83–0.97).  

 

Figure 4: Kaplan-Meier curves generated examining local progression free survival of high and low 

risk groups identified using (A) RECISTv1.1, (B) DESEP-predicted LPFS, (C) auto-segmentation-

based volumetric RECIST (DESEP-calculated volume), and (D) computer-based unidimensional 

RECIST (DESEP-calculated diameter). RECISTv1.1, auto-segmentation-based volumetric 

RECIST, and computer-based unidimensional RECIST made serial measurements on multiple 

surveillance images to categorize patients as having progression of disease vs. non-progressive 

disease. DESEP-predicted LPFS extracts radiomic features associated with local progression of 

disease. Comparisons between groups were made using a log-rank test. 



Kaplan-Meier curves were generated using both the dichotomized RECISTv1.1 and the 

DESEP predictions to estimate differences in OS and DSS; these curves are presented in Figure 

5 and Table 2. RECISTv1.1 was unable to discriminate patients on the basis of OS (HR=1.16, 

0.60-2.26, p=0.662) or on the basis of DSS (HR=0.97, 0.41-2.29, p=0.942). DESEP-predicted OS 

performed well when discriminating OS (HR=6.31, 3.65-10.93, p<0.001). The mean OS time was 

3.60 years (±0.33 years) in the group with a predicted low risk for death compared to 1.03 years 

(±0.18 years) in the high-risk group. DESEP-predicted DSS performed similarly well with DSS 

predictions (HR=9.25, 4.50-19.02, p<0.001). The mean disease specific survival time was 4.15 

years (±0.41 years) compared to 0.84 years (±0.11 years) in the low risk and high risk groups 

respectively. DESEP-predicted OS and DESEP-predicted DSS demonstrated a c-statistic of 

c=0.83 (0.73–0.93) and c=0.76 (0.64–0.88) respectively when evaluated at a time point of two 

years after completion of SBRT. 

 

Figure 5: Kaplan-Meier curves examining the predictive power of DESEP-predicted 

categorizations for (A) overall survival (OS) and (B) disease specific survival (DSS). This is 

presented in comparison to RECISTv1.1 for (c) OS and (D) DSS. Both the DESEP-predicted OS 



and DESEP-predicted DSS methods extracted radiomic features associated with OS and DSS, 

respectively. RECISTv1.1 method made serial measurements on multiple surveillance images to 

categorize patients as having progression of disease vs. non-progressive disease, Comparisons 

between groups were made using a log-rank test. 

Overall Survival 

Method 
Low Risk Group 
(Mean±SD) 

High Risk Group 
(Mean±SD) Hazard Ratio (95%CI) C-statistic (95%CI) p-value 

DESEP-
predicted 
OS 3.60 yrs (±0.33 yrs) 1.03 yrs (±0.18 yrs) HR=6.31 (3.65-10.93) 0.83 (0.73-0.93) <0.001* 

RECISTv1.1 3.52 yrs (±0.55 yrs) 3.02 yrs (±0.39 yrs) HR=1.16 (0.60-2.26) N/A 0.662 

            

Disease Specific Survival 

Method 
Low Risk Group 
(Mean±SD) 

High Risk Group 
(Mean±SD) Hazard Ratio (95%CI) C-statistic (95%CI) p-value 

DESEP-
predicted 
DSS 4.15 yrs ( ±0.41 yrs) 0.84 yrs (±0.11 yrs) HR=9.25 (4.50-19.02) 0.76 (0.64-0.88) <0.001* 

RECISTv1.1 4.30 yrs ( ±0.68 yrs) 4.04 yrs (±0.60 yrs) HR=0.97 (0.41-2.29) N/A 0.942 

            

Local Progression Free Survival 

Method 
Low Risk Group 
(Mean±SD) 

High Risk Group 
(Mean±SD) Hazard Ratio (95%CI) C-statistic (95%CI) p-value 

DESEP-
predicted 
LPFS 3.57 yrs (±0.69 yrs) 1.33 yrs (±0.18 yrs) HR=3.58 (1.66-7.18) 0.90 (0.83-0.97) <0.001* 

RECISTv1.1 3.51 yrs (±0.55ys) 0.99 yrs (±0.11yrs) HR=6.97 (3.51-13.85) N/A <0.001* 

 

Table 2: Comparison of mean survival time of high risk and low risk groups for three primary 

endpoints of overall survival, disease specific survival, and local progression free survival. Using 

RECIST categorization, the high risk group was defined as having progression of disease while 

the low risk group was any other category indicating non-progressive disease. Comparisons 

between groups was performed using a log-rank test.  

The current study provides evidence of the prognostic power of a deep-learning 

segmentation based model in patients with NSCLC treated with SBRT. The DESEP model may 



be used with RECISTv1.1 criterion to determine a patient's risk for disease progression, overall 

survival, and disease specific survival. 

Ideas/aims for future extramural project: As a multi-disciplinary research team, we 

(Drs. Xiaodong Wu, Stephen Baek, and myself at UI and Dr. Sanjay Anita at Yale) have been 

preparing the proposal of NIH U01 that is planned to be submitted in June, 2021. As co-

investigators, Drs John Buatti, Bryan Allen, and Brian Smith will still contribute this research. Its 

specific aims are still under development. The current versions of the three specific aims are; 1) 

Optimize and validate weakly-supervised learning strategies to train a deep radiomics model. 2) 

Develop a novel federated learning method to minimize the domain shift problem. 3) Validate the 

efficacy of interpretability methods and Bayesian inference in clinical decision making. The 

underlying scientific premise for this grant proposal is that the current challenges in deep-learning 

based cancer research can be addressed by an interpretable, Bayesian deep learning model 

trained with weakly-supervised learning objectives optimized via federated learning. Weak 

supervision is an emerging idea allowing deep learning models to be trained from incomplete, 

inexact, and/or missing supervision, which evidently can reduce data annotation costs and thus 

increase the size of training data. Federated learning trains a model at each local data source in 

a distributed manner, which can effectively eliminate the impediments of data sharing. We 

hypothesize that a substantial synergy will be produced when weakly-supervised learning is 

combined with federated learning, by means of increased amount of qualified data, reduced 

overhead to produce local federated updates, and consequently, lowered barrier to join a 

federated learning network, ultimately leading to a more popular and broader use. Furthermore, 

the complexity and the low tractability of federated learning can be compensated by an 

interpretable, Bayesian network that has visually interpretable features, an explainable reasoning 

process, and quantifiable uncertainty. Our vision is to build a multi-institutional radiomics network, 

called RadiomiQ, building upon these three concepts, implemented in an easily scalable Python 

framework. Multiple institutions including University of Iowa, Yale, and Stanford, representing 

different geographical locations across the United States will participate. The study teams in these 

institutions have been collaborating through multiple capacities, including the NSF-funded 

federated learning project which will complement the current project.  

Publications resulting from project: A manuscript is about to be submitted. The final 

draft has been reviewed by coauthors and has been updated. It is expected to be submitted within 

a month into the New England Journal of Medicine (impact factor 74.699 that is ten times higher 

than the most prestigious journal in Radiation Oncology field). 


