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Brief summary of accomplished results: 

The project aims to identify the enhancers that are associated with elevated risk for breast 

cancer. From the processed data set of 1,401 positive examples and 1,401 negative examples, 

we identified top 30,000 most frequent k-mers from the positive set and the negative set, 

respectively, where k ranges from 7 to 13, and used the frequency values of the k-mers in the 

union of the two sets of k-mers as the features for prediction. We applied different classification 

algorithms including k-Nearest Neighbors (k-NNs), logistic regressions, decision trees, random 

forest, linear/kernelized Support Vector Machines (SVMs), Neural Networks, and LSTM. The 

highest prediction accuracy we achieved was 95.1% using neural networks on the 11-mers.     

 

Research report: 

Aims (provided by PI): 

1. To train state-of-the-art machine-learning-based classifiers on a set of breast 

epithelium enhancers, multiple classifiers will be deployed, and their performances 

will be compared.  

2. There are four variables: training predictors (X) to train classifiers, binary outcomes 

(Y) to be predicted by the classifiers, testing predictors (X_positive and X_negative) 

to compute predicted chromatin effects of variants (SNPs) using the trained 

classifiers. 



 

Data: 

We started with a data set of 1,401 gene sequences of length 500 bp that are labeled with 

"positive" and a data set of 2,796 gene sequences of the equal length labeled with "negative". 

The positive sequences are defined using biochemical markers.  The positive set were 

candidate enhancers in MCF7 breast cancer cells defined by three features: 1) chromatin is 

accessible in MCF7 cells, as defined by Dnase hypersensitive sites-Seq (DHS) data (DHS data 

from MCF7 cells: SRX1161152 , SRX1161153), 2) chromatin is marked by histone H3 K27 

acetylation, a mark of active enhancers, in MCF7 cells (H3K27Ac ChIP-Seq from MCF7 cells: 

SRX3083139) and 3) the elements are in physical contact gene promoters (average HiC data, 

in supplemental data of in Fulco et al 2019 PMID: 31784727)). The negative set are elements 

randomly selected from the human genome, that do not overlap members of the positive set, 

but that are matched to the positive set in GC content, length, and repeat regions (Ghandi et al., 

2014, PMID: 25033408 ). 

To create a balanced data set for training, we reduced the size of the negative set to 1,401 by 

random selection, so that the final data set had the equal size of positive and negative 

examples. To derive as many different types of features for prediction from the sequences as 

we could, we identified a) the frequencies of the four base pairs A, C, G, and T, respectively, b) 

the ratios of one base pair to another, c) all 1-mers, all 2-mers, and all 3-mers, and d) the 

sequence embeddings. We further identified top n most frequent 9-mers from the positive set 

and the negative set, respectively, where n includes 3,000, 10,000, 30,000, and 100,000, and 

got the frequency values of the 9-mers in the union of the two sets of k-mers. We finally 

identified top 30,000 most frequent k-mers from the positive set and the negative set, 

respectively, where k includes 7, 9, 10, 11, 12, and 13 and got the frequency values of the k-

mers in the union of the two sets of k-mers. 

Artificial intelligence/Machine Learning Approach: 

Using all the features listed for prediction, we built binary classifiers that leveraged a variety of 

traditional classification algorithms including k-Nearest Neighbors (k-NNs), logistic regressions, 

decision trees, random forest, linear/kernelized Support Vector Machines (SVMs), Neural 

Networks, and LSTM (Long Short-Term Memory). 

Experimental methods, validation approach: 

For each model, we randomly split the whole data set into 75% of a training set and 25% of a 

test set. We checked the precision, recall, f1-score, and accuracy for each model. Only the 

accuracy values are listed below in the Results section. For each setting, we used, when 

applicable, 5-fold cross validation for parameter optimization.     

Results: 

The highest prediction accuracy we achieved was 95.1% using neural networks applied 

to strings of 11-mers.  

https://www.ncbi.nlm.nih.gov/sra?term=SRX1161152
https://www.ncbi.nlm.nih.gov/sra?term=SRX1161152
https://www.ebi.ac.uk/ena/browser/view/SRX3083139


Below is the performance summary. The green cells in the table indicate the highest accuracy 

for the corresponding set of features. The blue cells show that those simple features such as 

counts, ratios, and sequence embeddings did not work well, not yielding impressive results. 

Judging from the results in yellow cells, we learned that selecting the top 30,000 most frequent 

9-mers from the positive and negative sets and then taking the union of the two sets of 9-mers 

yielded the best performance. Based on that finding, we further experimented with 7-mers, 9-

mers, 10-mers, 11-mers, 12-mers, and 13-mers – determining that 11-mers resulted in the 

highest achieved performance of 95.1%.  

Features k-NNs 

Logistic  
Regress
ion 

Decision  
Trees 

Random  
Forest 

Linear  
SVMs 

Kerneli
zed 
SVMs 

Neural  
Networ
ks LSTM 

counts (4) 0.734 0.769 0.663 0.734 0.767 0.767 0.763   

ratios (16) 0.733 0.774 0.659 0.738 0.772 0.764 0.769   

unigrams (500) 0.711 0.7 0.618 0.755 0.717 0.754 0.694   

bigrams (499) 0.71 0.704 0.604 0.755 0.714 0.757 0.689   

trigrams (498) 0.709 0.703 0.635 0.755 0.716 0.758 0.686   

counts + ratios 0.731 0.769 0.659 0.734 0.772 0.765 0.762   

uni + bi + tri 0.713 0.7 0.645 0.756 0.715 0.757 0.687   

counts + ratios + uni + bi + tri 0.652 0.713 0.677 0.755 0.723 0.757 0.715   

co-counts (7984) 0.769 0.732 0.695 0.784 0.706 0.776 0.757   

counts + ratios + co-counts 0.769 0.737 0.704 0.774 0.707 0.776 0.764   

sequence embedding 0.774 0.789 0.696 0.791 0.797 0.798 0.79 0.74 

Embedding + counts + ratios 0.762 0.799 0.707 0.798 0.794 0.802 0.789   

9-mers 0.494 0.506 0.474 0.509 0.478 0.485 0.518   

Counts of top-3,000 most 
frequent 9-mers in the 
positive OR negative set   0.586 0.692 0.621 0.659 0.699 0.7 0.715   

Counts of top-10,000 most 
frequent 9-mers in the 
positive OR negative set   0.639 0.799 0.629 0.728 0.799 0.802 0.83   

Counts of top-30,000 most 
frequent 9-mers in the 
positive OR negative set   0.693 0.832 0.593 0.746 0.833 0.82 0.867   

Counts of top-100,000 most 
frequent 9-mers in the 
positive OR negative set   0.719 0.78 0.612 0.779 0.779 0.689 0.822   

Counts of top-30,000 most 
frequent 7-mers in the 
positive OR negative set   0.642 0.708 0.601 0.705 0.708 0.696 0.72   

Counts of top-30,000 most 
frequent 9-mers in the 
positive OR negative set   0.693 0.832 0.832 0.74 0.833 0.82 0.867   

Counts of top-30,000 most 
frequent 10-mers in the 
positive OR negative set   0.649 0.863 0.606 0.699 0.879 0.736 0.934   



Counts of top-30,000 most 
frequent 11-mers in the 
positive OR negative set   0.645 0.86 0.633 0.676 0.867 0.643 0.951   

Counts of top-30,000 most 
frequent 12-mers in the 
positive OR negative set   0.603 0.857 0.645 0.66 0.864 0.618 0.927   

Counts of top-30,000 most 
frequent 13-mers in the 
positive OR negative set   0.532 0.857 0.631 0.74 0.892 0.612 0.919   

 

To identify important features, we proceeded with feature importance from the neutral network 

setting that yielded the best performance.  Neural networks do not provide an explicit way of 

calculating feature importance, while logistic regression, decision trees, and random forest do. 

We therefore simply chose logistic regression for feature importance, as the performance of the 

other two was not as good (0.86 vs. 0.633 vs. 0.676, which are highlighted in red in the table). 

Below is the feature importance result. The list shows the top 100 features (i.e., 11mers) that 

have the largest absolute importance values, out of all the 53,044 features. Notice that the 

importance values can be either positive or negative. The positive scores indicate a feature that 

predicts class 1 (positive), whereas the negative indicate a feature that predicts class 0 

(negative). Again, their absolute values are sorted in descending order.   

11-mers Importance 

TTTGTTTGTTT 0.4326 

GGGGGGGGGGG 0.3408 

ACTTTTTTTTT 0.2956 
GCTGTGCGCCA 0.2921 

GAGGCTGAGGC -0.2907 

AGACAGAGTCT 0.2899 

CACTCCAGCCT 0.2809 

AACCTGGGAGG 0.2802 

GCGCCTGTAAT 0.2745 

CCAGCAGAGGG 0.2709 

ACAGAGTGAGA 0.2684 
CAGCACTTTGG 0.2652 

AAAAAAATAAA -0.2619 

AAATATTTGTT 0.2589 

AATATTTGTTG 0.2586 

AAAAGAAAAAA -0.2572 

CTTTTTTTTTT 0.2557 

GGGCACCCCTC 0.2549 
TGGTGGCAGGG 0.2532 

TTTTTTTTTGA 0.2525 

TTTTGTTTGTT 0.2512 

CTAAAAATACA -0.2506 

AGCCTCACTCA 0.2482 

CTTTTTTTTTG 0.2474 

AAAAACAAAGA 0.2463 
GAGACAGAGTC 0.2444 

TCCACCCGCCT 0.2442 

ATGGAGTCTCA 0.2441 

ACCACTGCACT 0.2441 

GAAAGTGCTAA 0.2429 



GGGCAGATCAC -0.2429 

GCAGGCCAGGG 0.2419 

GAGGCGGAGGC 0.2416 

AAAAAAAAAAT 0.2386 
CACAGGCACAT 0.2377 

AAAAAAGAAAG 0.2362 

CTGAATTCATC 0.2349 

GAGTTTTGTTT 0.2333 

GGCAGGGCGCG 0.2315 

TGGAAGAGCTG 0.2302 

AGCCACCGCGC 0.2288 
CCTGTTTGTTT 0.2277 

TCATGCCTGTA 0.2272 

GTTTGTTTGTT 0.2268 

AACCAATGCAC 0.2266 

ATAAAGTTTAA 0.2258 

GAACCTGGGAG 0.2252 

TTTTGTTTTTT 0.2243 
CCCACCACCAC -0.2223 

ACCCGGGAGGC 0.2221 

GGGAAATGTAG -0.2218 

GTGTGTGTGCT 0.221 

GAAACTGAGGC -0.2196 

CCCTGCCAGCC 0.2193 

GAGCCCGGCTC 0.2191 
AATAAATATTT 0.2191 

AGGCTGAGGCA -0.2189 

GCCACCGCGCC 0.2185 

AGGGGGCGGGC 0.2179 

AAGGGGGCGGG 0.2179 

AAAGGGGGCGG 0.2179 

GTAATCCCAGC 0.2173 

TCTGTGTGTGT 0.2172 
TGTGTATCTAA 0.217 

CCACCGCGCCC 0.2168 

TTTTTTTTTCT 0.2167 

GGGGGCGGGGC 0.2162 

GCCTGTTTGTT 0.2159 

GTCCCTCCCCA 0.2158 

AAAAAAAAGAA -0.2145 
AAAACAAAAAA 0.2143 

AGGAGGCAGAG -0.2126 

GAGCCACTGTG -0.2122 

TTTGTTTTTTG 0.2112 

AAGGCCAAATT 0.211 

TTGGAAGAGCT 0.2101 

ATTGGAAGAGC 0.2101 
CATTGGAAGAG 0.2101 

TTTCTTTCTGT 0.209 

CATGCCTGTAA 0.2088 

AAAAAAAAATT 0.2085 

AACATGGCAAA -0.2084 

GATTTTATCTG 0.207 

GGTGGCAGGCG 0.2066 
GGAGGCAGAGG -0.2062 

CCTGGTGCTGT 0.206 



AATATTTATTT 0.2059 

CCGGGAGGCGG 0.2057 

GGCGGGGGCGG 0.2055 

GCAGAGCCCAG 0.2053 
TTGTATTTTTG 0.2051 

CTGAGGCGGGA 0.2048 

CTCATTTTCCT 0.2045 

GAGTGGGGTTC 0.2042 

AGGTCACAAAG 0.2041 

TCCTCTCTGTG 0.2037 

TGAGAAAGCAA 0.2036 
GGGACTACAGG -0.2033 

ATTTTCTTTTT -0.2033 

CTCTACTAAAA -0.2023 

  

Ideas/aims for future extramural project: 

Common inherited DNA variants called single nucleotide polymorphisms (SNPs) are associated 

with elevated risk for cancer, including breast cancer, but the biological mechanisms underlying 

this risk are unknown. Understanding these mechanisms may be of benefit in diagnosis, 

prediction of disease risk, and in novel therapy design. The cancer-risk-associated SNPs, 

identified in genome wide association studies (GWAS), are invariably found in clusters that all 

travel in meiosis on the same haplotype block. To translate a GWAS result from a statistical 

observation into biological insight requires distinguishing the SNPs that are functional from 

those merely in linkage disequilibrium with the functional ones. We hypothesize that functional 

SNPs alter disrupt enhancers active in breast epithelial cells and in breast cancer cells, while 

the rider SNPs do not.  We predict that functional SNPs will alter the binding of transcription 

factors essential for enhancer function.  The project of this objective was to identify the top-

performing machine learning-based algorithm to distinguish such enhancers from other genomic 

DNA lacking this functionality.   

After a systematic comparison of various approaches, and various types of sequence features, 

we identified a classifier that performed with a remarkable prediction accuracy of 95.1%. These 

results from this seed project constitute potent preliminary data for a follow up study, in which 

we will use this classifier to identify the SNPs that demote the element harboring them from 

belonging in the positive set to belonging in the negative set.   The envisioned follow up study 

will be a marriage of data analytics and wet-bench science. The IIAI (Lee/Sonka) group will 

identify breast-cancer associated SNPs that pass the bioinformatic filters presented above, the 

Cornell group will test these SNPs for functional effect in standard luciferase-based reporters 

assays or alternatively in sequencing-based massively parallel reporter assays. 

 

Publications resulting from project:  

No publications yet. There is potential in the near term for a purely bioinformatics paper 

comparing the performance of the classifier identified here to that of published classifiers, and in 

the longer term, for one that combines prioritization of SNPs, potentially with multiple classifiers, 

and tests of those SNPs in reporter assays in vitro. 


